AI/ML

Deploy DeepSeek-R1 on a Cloud Server Using an Ollama Docker Container Step by Step Guide

deepseek
Deepseek Model for your Business?
  • check icon

    Cost Efficiency (Open Source)

  • check icon

    Lower Long Term costs

  • check icon

    Customised data control

  • check icon

    Pre-trained model

Read More

Get Your Deepseek AI Model Running in a Day


Free Installation Guide - Step by Step Instructions Inside!

We are installing the DeepSeek-R1 Model on a GCP n1-standard-4 instance with 1 NVIDIA T4 GPU. Let's see the step by step process.

Step 1: Install NVIDIA GPU Drivers & CUDA on GCP VM

Since we selected a T4 GPU, we must install NVIDIA drivers and CUDA for GPU acceleration.

Update Systemsudo apt update && sudo apt upgrade -y

Install NVIDIA Driver sudo apt install -y nvidia-driver-535

Check if the GPU is detected:nvidia-smi

 

The output will show NVIDIA T4 with its memory details.

  • Install CUDA & cuDNN

Install CUDA Toolkit 12.2 (Latest)

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pinsudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600wget https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda-repo-ubuntu2204-12-2-local_12.2.0-1_amd64.debsudo dpkg -i cuda-repo-ubuntu2204-12-2-local_12.2.0-1_amd64.debsudo cp /var/cuda-repo-ubuntu2204-12-2-local/cuda-*-keyring.gpg /usr/share/keyrings/sudo apt updatesudo apt install -y cuda

 

Set CUDA paths:

echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrcecho 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrcsource ~/.bashrc

 

Verify installation:

nvcc --version

 

Output will show a CUDA version like 12.2.

Step 2: Install Docker & NVIDIA Container Toolkit

  • Install Docker
sudo apt install -y docker.iosudo systemctl start dockersudo systemctl enable docker

 

Verify installation:docker --version

  • Install NVIDIA Container Toolkit Enable GPU support in Docker:
  • distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \ && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \ && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.listsudo apt updatesudo apt install -y nvidia-docker2sudo systemctl restart docker

     

    Verify GPU support in Docker:docker run --rm --gpus all nvidia/cuda:12.2.0-base nvidia-smi

    If it shows the NVIDIA T4 GPU, then we are ready to proceed.

     

    Step 3: Install Ollama in Docker

    Now, install Ollama inside a Docker container.

    • Pull Ollama Docker Image
    docker pull ollama/ollama

    Start Ollama with GPU:docker run --rm --gpus all -d --name ollama -p 11434:11434 ollama/ollama

    Verify it's running:docker ps

     

    Step 4: Pull & Run Deepseek-r1 8B

    Once Ollama is running, pull the Deepseek-r1 8B model:docker exec -it ollama ollama pull deepseek-r1:8b

    Wait for it to download.

    Run Deepseek-r1:docker exec -it ollama ollama run deepseek-r1:8b

     

    Test it:

    curl -X POST "http://localhost:11434/api/generate" -d '{  "model": "deepseek-r1:8b",  "prompt": "What is the capital of France?",  "stream": false}'

     

    It should return "Paris" as the response.

    Step 5: Install & Start Ollama GUI

    • Pull Ollama GUI Docker Image
    docker pull ghcr.io/open-webui/open-webui:main

     

    Run it:

    docker run -d --name ollama-gui -p 3000:3000 \ -e OLLAMA_API_BASE_URL=http://host.docker.internal:11434 \ ghcr.io/open-webui/open-webui:main

     

    This will start Ollama GUI on port 3000.

     

    Step 6: Access Ollama GUI & Use Deepseek-r1

    Open http://YOUR_VM_EXTERNAL_IP:3000 in your browser.

    You should see the Ollama GUI dashboard.

    Click Models and you should see deepseek-r1:8b.

    Click Chat, select the model and start chatting.

     

    Final Summary

    •  Installed NVIDIA GPU drivers, CUDA and cuDNN
    •  Set up Docker & NVIDIA container support
    •  Ran Ollama in Docker with GPU acceleration
    •  Pulled & tested Deepseek-r1 8b model
    •  Installed Ollama GUI and accessed it in a browser

    GCP VM with T4 GPU can now run Deepseek-r1 8B smoothly.

     

    Ready to transform your business with our technology solutions? Contact Us  today to Leverage Our AI/ML Expertise. 

    0

    AI/ML

    Related Center Of Excellence