AI/ML

    Deploy StarCoder on Your Local Machine with Docker & Hugging Face

    starcoder-image

    Starcoder Model for your Business?

    • check icon

      Cost Efficiency (Open Source)

    • check icon

      Lower Long Term costs

    • check icon

      Customised data control

    • check icon

      Pre-trained model

    Read More

    Get Your Starcoder AI Model Running in a Day


    Free Installation Guide - Step by Step Instructions Inside!

    Introduction

    StarCoder is a high performance AI model optimized for code generation. To run it on a local server, we will use Docker to ensure a stable and isolated environment and Hugging Face Transformers to download and execute the model.

    System Requirements

    Before starting, ensure your local server meets the following:

    • Ubuntu 20.04+ or Debian-based OS
    • Docker installed (if not, install it using the steps below)
    • At least 16GB RAM for smooth model execution

    Step 1: Install Docker (If Not Already Installed)

    To set up Docker on your local server run

    sudo apt update && sudo apt upgrade -ysudo apt install docker.io -ysudo systemctl start dockersudo systemctl enable docker

    Verify the installation:

    docker --version 

    Step 2: Set Up a Docker Container for StarCoder

    Create a container with Python and necessary libraries:

    docker run -it --name starcoder-container --rm -p 8000:8000 python:3.9 bash

    Inside the container, install dependencies:

    pip install torch transformers flask

    Step 3: Download StarCoder from Hugging Face

    Now, download the StarCoder model:

    from transformers import AutoModelForCausalLM, AutoTokenizertokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder")model = AutoModelForCausalLM.from_pretrained("bigcode/starcoder")

     

    This fetches the model and tokenizer from Hugging Face.

    Step 4: Running the Model as a Local API

    Create a simple Flask server to expose StarCoder’s API:

    from flask import Flask, request, jsonify

     def generate_code(prompt): inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(**inputs, max_length=200) return tokenizer.decode(output[0])app = Flask(__name__)@app.route("/generate", methods=["POST"])def generate(): data = request.json response = generate_code(data["prompt"]) return jsonify({"response": response})if __name__ == "__main__": app.run(host="0.0.0.0", port=8000)

     

    Save this as server.py inside the container.

    Step 5: Running the API Server

    Inside the Docker container, start the server:

    python server.py

     

    Your StarCoder API is now live at:

    http://localhost:8000/generate

    You can send a POST request with a prompt:

    { "prompt": "def fibonacci(n):"}

     

    Summary: Can You Run StarCoder?

    With this setup, you have StarCoder running in a Docker container on a local server, accessible via an API. This approach ensures flexibility and easy deployment for local AI based coding assistance.

     

    Ready to transform your business with our technology solutions? Contact Us  today to Leverage Our AI/ML Expertise. 

    Experts in AI, ML, and automation at OneClick IT Consultancy

    AI Force

    AI Force at OneClick IT Consultancy pioneers artificial intelligence and machine learning solutions. We drive COE initiatives by developing intelligent automation, predictive analytics, and AI-driven applications that transform businesses.

    Share

    facebook
    LinkedIn
    Twitter
    Mail
    AI/ML

    Related Center Of Excellence